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Abstract In this article we would like to propose a modified simulated annealing
procedure termed as adaptive mutation simulated annealing. In this, the parameters
within the optimization scheme is dynamically updated keeping in view the require-
ments of the parameter values needed for efficient and unequivocal identification of
the global minimum in a really rugged multiple minima surface. We apply this pro-
cedure to the problem of finding out the global minimum structures of pure Platinum
and Palladium clusters as well as the mixed Pt–Pd ones (for cluster sizes upto 60),
where the interactions among the constituents of the cluster are defined by the many
body empirical Gupta potential. Once the structures are obtained, we try to find out the
sizes for which the clusters possess greater stability. These so called magic numbers
are compared with existing literature values. To test the efficiency of the proposed
procedure we compare the results with conventional simulated annealing. We also
analyse in detail and calculate various statistical properties and their evolution during
the adaptive mutation simulated annealing run. This in-depth analysis gives an insight
into why the current procedure outperforms the conventional simulated annealing.
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1 Introduction

Determination of geometrical structures of clusters is of fundamental importance as
it affects all aspects of the chemical and physical behaviour of such systems. A large
amount of literature has focused on the study of nano-clusters due to the variety of
their technological uses [1–12].

There are two aspects to the determination of minimum energy structures [13–21],
which are actually considered to be chemically important. It must be emphasised here
that the lowest energy structure or the global minimum is of paramount importance but
the low lying local energy structures have their importance too. In a real experimental
situation, if the energy barrier between the global and the low lying local structures are
not very much, the structure which can be sensed experimentally at a finite temperature
and in a given finite time is generally an average over all these near energy confor-
mations. Firstly, the calculation of the energy associated with a particular geometric
configuration can be determined at an ab initio level of calculation or some phenom-
enological potential [22–31] can be used to do the same at a lower computational
cost but the structures computed using these empirical potentials are approximations
to the ones obtained using calculations at some quantum chemical level of theory.
However, it must also be stressed that if the empirical potential is of high quality i.e.
is able to essentially take into account all the major inter atomic interactions then
the structures obtained as critical points on this empirical potential energy surface is
extremely close to the ones obtained using quantum chemical calculations [32,33]. So,
though the use of empirical potentials generate approximate structures, the degree of
approximation can be substantially reduced by improving the quality of the empirical
potential.

Secondly, the task of structure evaluation involves a process of optimization of
the geometrical parameters. On a potential energy hypersurface stable structures are
the ones for which the gradient norm is zero. The significance of zero gradient norm
is that it implies a point on the hypersurface where there are no unbalanced forces
acting on the particles forming the chemical entity. Only if there are no unbalanced
forces, does a real equilibrium geometry is generated. The theoretical estimation or
determination of such structure is a non-trivial task in itself and in most applications,
most of deterministic techniques fail if the search is on a surface which is extremely
rugged and supports multiple minima of varying depths. Deterministic techniques
are gradient based and these methods if used, always leads to the finding out of the
minimum which is nearest to the starting point from which the search was initiated.
Hence the objective of finding the global minimum from a myriad of possibilities
(for multi minimal surfaces) becomes an onerous one. The only way out of this dif-
ficulty is to perform multiple optimization procedures with different starting point
and check the final convergence, and from the output of all these runs select the best
result obtained so far. Even after these multiple runs the task of finding the global
minimum might remain elusive. So we can conclude that for extremely rugged sur-
faces using deterministic techniques is a poor choice both in terms of the quality of
results obtained as well as the computational cost. The way out is to switch over to
non-deterministic (stochastic) techniques which uses concepts of random walk and
Markov chains to surmount energy barriers separating different energy conforma-
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tions and ultimately unequivocally find out the global minimum. In a nutshell, to
design robust and high performing optimization processes the basic philosophy of
using the gradient as a dictator of the search on a hypersurface must be done away
with.

There has been a plethora of techniques that are in vogue which perform a more
global search on such potential energy surfaces like simulated annealing (SA) [34–
44], Genetic Algorithms [20,45–52], Basin Hopping [53,54] etc. But all of them
at varied levels entail high computational cost and/or suffer from the problem of
premature convergence. There already exists a huge amount of literature which even
after highlighting the power of these methods touch upon the reality of the above
mentioned problems [48]. There have also been attempts to address these issues and
find probable way out by making necessary modifications to correct these problems.
However the success of these attempts have been varied and most authors have pointed
to the fact that a particular modification at the algorithmic level generally does not
produce an omnipotent search strategy.

In the present communication we take up the Simulated Annealing method that
has been applied to a large number of problems over a long period of time. SA is
based on the conventional metallurgical process of annealing. In this method initially
the system is allowed to equilibriate at a high ‘temperature’ and is ‘cooled’ gradually
leading to the thermodynamically most stable state (global minimum) of the system.
The practical application of SA suffers from ‘freezing out’ or premature convergence
both due to a finite number of steps spent on trying to equilibriate the system at a
particular temperature and the rather fast cooling of the system. To overcome this
deficiency a lot of work has been done in the past and our present attempt is at over-
coming this premature convergence problem using our adaptive mutation simulated
annealing (AMSA) without undue enhancement of the computational cost. We have
chosen the determination of the global minimum structures, as well as a few low
lying ones, of Platinum, Palladium pure clusters as well as Pt–Pd mixed clusters,
for cluster sizes from 2 to 60, where the structures are evaluated by assuming the
interaction between the atoms being modelled by the suitably parametrised Gupta
Potential.

2 Methodology

2.1 Gupta potential

Usually for large clusters of atoms since large area of configuration space are to
be searched so ab-initio calculations are infeasible starting with a random guess for
the putative structure. Thus much interest has been shown in developing empirical
atomistic potentials to allow relatively rapid searching of such space that lead to good
guess structures that can be further refined using some level of ab-initio calculation. To
that end, many body-empirical potentials [22–31], such as the Gupta Potential [27,28]
has been derived by fitting experimental data to values calculated using a potential of an
assumed functional form. Gupta Potential is usually used to describe the inter-atomic
bonding in transition and noble metal clusters. This potential function is obtained
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Table 1 Gupta potential
parameters for Pt–Pd
clusters [20]

Pt–Pt Pd–Pd Pt–Pd(I)

A/eV 0.2975 0.1746 0.23

ζ/eV 2.695 1.718 2.2

p 10.612 10.867 10.74

q 4.004 3.742 3.87

r0/Å 2.7747 2.7485 2.76

from a tight-bonding second moment approximation of the density of states for the
‘d’ electrons and comprises an attractive many body (V m) term and a repulsive pair
(V r ) term, summed over all N atoms:

Vclus =
N∑

i

{
V r (i) − V m(i)

}
(2.1)

where V r (i) and V m(i) are defined as:

V r (i) =
N∑

j �=i

A(a, b)exp

{
−p(a, b)

(
ri j

r0(a, b)
− 1

)}
(2.2)

and

V m(i) =
⎡

⎣
N∑

j �=i

ζ 2(a, b)exp

{
−2q(a, b)

(
ri j

r0(a, b)
− 1

)}⎤

⎦

1
2

(2.3)

In Eqs. 2.2 and 2.3, ri j is the distance between atoms i and j in the cluster, and A,
r0, ζ, p, q are fitted to experimental values of the cohesive energy, lattice parameters
and independent elastic constants for the reference crystal structure at 0 K.

The Gupta Potential parameters, for Pt–Pd alloy clusters, take different values
depending on the nature of interaction (Pt–Pt, Pd–Pd and Pt–Pd type). The Pt–Pt
and Pd–Pd parameters were derived by Cleri and Rosato [28] by fitting to the pure
metals, whereas Pt–Pd parameters were derived by taking the averages of the Pt–Pt
and Pd–Pd parameters and these are listed in Table 1.

Due to low enthalpy of formation, the Pt–Pd alloys are solid solution for all com-
position. Parameters p and q in the Gupta Potential are taken to be as measures of the
ranges of the repulsive and attractive interaction respectively, where ‘a’ and ‘b’ are the
atomic labels for i th and j th atom. Thus with the increasing inter atomic separation
the pair or the many-body energy contributions die off. From the parameter table it is
clear that larger ‘A’ value for Pt means that the pair term is more repulsive for Pt
than Pd but from the angle of attractive many body potential Pd has a smaller hop-
ping integral (ζ ) than Pt , showing the smaller cohesive energy of bulk Pd compared
to Pt . So the nature of pair and many body potential energy terms are important in
determining the type and stabilities of different cluster systems.
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2.2 Geometry optimization

The method we have used to search for the minimum energy cluster structure is based
on thermal fluctuation based stochastic optimizer, SA, which is a global search tech-
nique. It is based on the Metropolis Monte Carlo Algorithm [55] which was modified
as a numerical optimization problem by Kirkpatrick et al. [34], Cerny [36] and Pin-
cus [37], independently. It was generalized for optimization of functions of continuous
variables by Vanderbilt and Louie [38]. The ability of SA to jump over local minima
to converge to the global one was claimed and has been proven analytically [56].

2.2.1 The simulated annealing scheme

The potential energy surfaces of atomic clusters are some multi-minimal hyper-
surfaces with a number of local minima. SA can therefore overcome any local energy
barrier which needs to be crossed en-route to the lower minimum.

The working principle of SA starts from defining the variables that need to be
optimized (the geometrical parameters {xi }i=1,...,3N for a cluster of N atoms, in this
case). Then a corresponding objective function (F) or the cost function, which needs
to be minimized, determined with respect to a particular geometrical parameter set, is
defined by:

F = U {x} (2.4)

where ‘U ’ is a computed energy (using some energy function) of a particular geomet-
rical parameter value set {x}.

We start a particular SA run by making a random guess for the initial geometrical
parameter set

{
x (current)

}
, and compute the associated energy (U (current)) and the

objective function value or cost (F (current)).
The system is considered to be maintained at an artificially defined ‘temperature’

(Tin).
A new geometrical parameter set {xnew} is generated from the previous existing

one (
{

xcurrent
}
) usually via introduction of a random change in one of the parameter

values, but what we have used is a multiple point arithmetic mutation scheme where
each and every parameter has a finite probability of undergoing change. Multiple point
arithmetic mutation is implemented by defining a mutation probability pm . For each
variable, a probability check is performed (pm > r , where r is a random number)
which when found to be true leads to an arithmetic mutation of that variable given as:

xnew
k = xcurrent

k ± r fm (2.5)

where r is another random number and fm is a user defined mutation intensity that
defines the amplitude of mutation. Here we ensure that there must be change in at least
one variable.

The corresponding energy U new and the cost Fnew are computed and we determine
the difference in costs of the current and new parameter set given as:
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�F = F(
{

xnew}
) − F(

{
xcurrent}) (2.6)

If �F is negative the move is accepted i.e. we set:

{
xcurrent} = {

xnew}
(2.7)

If not the move is subjected to the Metropolis test according to the following sampling
probability (P), which is given by:

P = e
−�F
K T (2.8)

where T is SA temperature. The quantity ‘P’ scales between 0 and 1. Once ‘P’ is
evaluated, a random number (R) between 0 and 1 is called. If P > R, the move
is accepted, if not the move is rejected leading to the positional co-ordinates of the
atomic cluster remaining unchanged. It is clear that if T is high, ‘P’ will be close
to 1, and most move will qualify the Metropolis test. The SA temperature T can be
thought of as a parameter which controls the thermal fluctuations. The central idea is
that during the initial stages of search T is kept high so that the search space is sampled
at greater lengths till the correct direction is achieved and if a search is trapped in a
local attractive basin, the high temperature T helps to jump out of it to search a more
deeper minimum. But in the latter stages of the search a low T is perfectly all right as
the need for crossing local energy barriers do not arise. Hence T in a typical SA run
is kept high to start with, the mutation and metropolis test is applied multiple times to
allow the system to ‘equilibriate’ with the temperature ‘T ’ or allowed to sample for
a large number of steps nMetrop (hoping that equilibrium is achieved), and then the
temperature is slowly decreased, following a schedule called cooling schedule and in
the limit of T → 0 the right solution is hopefully found out. Here we have used the
cooling schedule given by:

Tnew = Told ∗ λcool (2.9)

where λcool is a user defined parameter (0.0 < λcool < 1.0).
There is a possibility that final set obtained after such a cooling schedule might not

be the global minimum (an effect of premature convergence), principally caused due
to a cooling schedule which, for practical purposes, is not performed infinitesimally
slowly. So we might need to re-anneal the system i.e. we reset the temperature ‘T ’ to
a high value (but less than ‘Tin’) and repeat the process for a number of times.

2.2.2 Adaptive arithmetic mutation

It was proven that global minima can be achieved if the initial temperature is taken
high enough and the cooling schedule is extremely slow. Many variants of annealing
have been reported [57–59] but they usually require values for parameters that are
problem specific moreover the slowness in attaining the result remains. Any attempt
at better computational efficiency leads to some decrease in the probability of finding
out good quality results.
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In order to enhance the exploration and the convergence properties of the SA scheme
we have applied an adaptive mutation scheme where the mutation probability (pm)
as well as mutation intensity ( fm) {defined below} are modified during the search
process at a particular temperature based upon the fraction of mutations (rm) that pass
the Metropolis criterion (naccept ) to the total number of samples done (nsamples). A
related scheme has been successfully applied in the case of Genetic Algorithm [60]
and a unique Random Mutation Hill Climbing [61] method for optimization in a
continuous variable space, previously.

In this particular scheme, after every successful Metropolis step, naccept is updated
by a unit value. On completion of nsample number of steps at a particular temperature,
we compute rm as:

rm = naccept

nsamples
(2.10)

where 0.0 ≤ rm ≤ 1.0, nsamples is actually taken as a fraction of the total number of
samples at a particular temperature (nMetrop) as nsamples = nMetrop/ isamples where
isamples is a small integer.

If the value of rm remains within the user defined range of [rmin
m , rmax

m ] (0.0 <

rmin
m , rmax

m < 1.0 and rmin
m < rmax

m ), then neither pm nor fm is changed.
A value of rm greater than rmax

m implies that a large fraction of Metropolis sampling
is successful and we can allow a greater exploration of the search space; thus we
increase the value of pm or fm as:

y = y ∗ (2.0 − �y ∗ r) (2.11)

where y = pm or fm, �y is a user defined parameter from the range [0.0, 1.0], r is
a random number from the range [0.0, 1.0].

If the value of rm turns out to be less than rmin
m , it implies a non-optimal search so

we decrease the value of pm or fm as:

y = y ∗ �y ∗ r (2.12)

Throughout, pm and fm have an equal probability of undergoing change.
Then we reset naccept to a value of zero and continue the sampling procedure.
Using the adaptive mutation scheme we hope to enhance the exploratory properties

of the search scheme and expect a better convergence to the global minimum with a
greater deal of certainty for each run.

There exist several cooling schedules in literature [64–67], We have used an geo-
metric cooling schedule followed by reheating to a higher temperature after the com-
pletion of each cooling schedule. Similar schemes have been used previously [62],
even allowing for reheating adaptively [58,67].

We have compared our results with that of the standard form of SA and no
comparison is made with the highly celebrated Adaptive Simulated Annealing of
Ingber [62,63] since the experiments we had with their available code requires
fine tuning of the various program parameters otherwise the comparison stands
redundant.
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2.3 Features of the method using adaptive SA

The adaptive SA runs always converge to the global minimum for any size cluster,
while a simple conventional SA might not. The probable reason might be that during
an adaptive SA run, as the parameters (temperature, mutation amplitude, mutation
probability) are rescaled to certain appropriate values at periodic intervals, the changes
are such that the simulation run picks up the right parameters which ultimately drives
it to the global minimum. In a conventional SA run, the parameter set is fixed in a given
run and some times fail to locate the global minimum unequivocally. So multiple run
might be needed which ultimately shoots up the computational cost. So an adaptive
SA is efficient both from the view points of efficiency as well as efficacy.

How far is the rescaling of parameters successful in inducing positive changes in
the search geometry?

It is evident from the results obtained (discussed in the following section) that
as the temperature is rescaled, the search parameters are also logically rescaled and
some associated features also show changes in behaviour and this changing behaviour
roughly mirrors the pattern of change of the temperature. At a rescaled high temper-
ature, the fluctuation in energy also increases, which then gradually decreases with
the decrease of temperature. The increased energy fluctuation starts instantly as the
temperature is readjusted to a high value. However, our ultimate goal is to find the
lowest energy structure. If we call Ebest as the energy of the lowest energy structure
so far obtained, then it is important to see if the rescaling of the simulation parameters
have an effect on it. from the plot of the Ebest against the number of SA steps, we see
that a better Ebest might not be found out as soon as the temperature and the associated
parameters are rescaled but once the change is made better state is found out if the
simulation is allowed to proceed for a limited number of steps. So in adaptive SA, the
plateau nature of the energy profile, (where no better energy state is found out over a
large number of steps) is relatively short compared to a conventional SA run. So, we
can categorically comment that the adaptive SA can cause convergence at faster rates
compared to the conventional version.

3 Results and discussion

3.1 Analysis of adaptive mutation simulated annealing (AMSA)

In this section we analyse in detail the important features of AMSA and how does
it compare vis-a-vis a fixed parameter Simulated Annealing. Figures 1, 2, 3, and 4
show the evolution of various parameter related to the AMSA run where the run has
been carried out over different number of Metropolis steps at a particular temperature.
In Fig. 1 the simulation run is over 500 ∗ 3N steps where ‘3N ’ is the total number
of co-ordinates to be optimized. Figure 1a shows the temperatures at various steps
(periodical reheating is done with a parameter λreheat = 0.9) and the decrease in
temperature is done to multiply the present temperature with λcool = 0.8). Figure
1b shows the variation Ebest − Eglobalbest , where Ebest is the lowest value of energy
obtained at a given temperature and Eglobalbest is the final target value in energy. It is
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Fig. 1 For run with nMetrop = 500 ∗ 3n, adaptive pm and fm , λreheat = 0.9, λcool = 0.8

seen that the best value of Ebest − Eglobalbest obtained is around 0.01 (which is some
distance away from full convergence). Figure 1c shows the average energy obtained at
a given temperature designated as 〈Ecurrent 〉 (here all energy values have been scaled
with respect to the known global best energy where the values have been rounded
off to 7 decimal places, and logarithmic scaling has been used throughout) with the
number of Metropolis steps at a particular temperature. The plot roughly mirrors the
variation in temperature with the periodic peaks being observed at the same number
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Fig. 2 For standard run with nMetrop = 1,000 ∗ 3n, adaptive pm and fm , λreheat = 0.9, λcool = 0.8

steps. Figure 1d–f show the variation of the average mutation amplitude (〈 fm〉), the
product of mutation amplitude and mutation probability (〈pm ∗ fm〉) and the mutation
probability (〈pm〉) itself. It must be noted that only in Fig. 1e which is 〈pm ∗ fm〉 versus
no. of temperature steps, does the profile roughly mirrors the temperature variation
profile of Fig. 1a. Figure 1g–j shows the variation of the standard deviations of the
quantities pm, Ecurrent , fm and Pm ∗ fm with the no. of the steps. Only in Fig. 1h,
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Fig. 3 For run with nMetrop = 2,000 ∗ 3n, adaptive pm and fm , λreheat = 0.9, λcool = 0.8

which is SD(Ecurrent ) does a close correspondence with the temperature variation
noticed.

Figures 2a–j show similar profiles when the simulation has been carried out over
1,000*3N generation or steps. The features that are worth noticing is that the Ebest −
Eglobalbest Fig. 2b reaches a low value of nearly 10−6, which means that the final
low energy structure obtained is much better compared to the earlier case. Figure 2c
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Fig. 4 For run with nMetrop = 2,000 ∗ 3n, adaptive pm and fm , {xcurrent } reset to {xbest } after run at a
particular T, λreheat = 0.9, λcool = 0.8

which the variation of 〈Ecurrent 〉 also shows very important features. At around 180
temperature steps a low value of 10−6 is reached and on subsequent upgrading of
temperature, various plateau like regions are obtained which are of higher 〈Ecurrent 〉.
These higher plateau like regions signify the achievement of local minima. So in a
particular AMSA run several local structures in addition to the global can in principle
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be isolated. The other figures in general mirror those for the first run with 500 ∗ 3N
steps except that move smooth features with less oscillations are observed in general.
However the 〈pm〉 still shows large fluctuations (Fig. 2f).

Figures 3a–j show similar profiles when the simulation has been carried for 2,000∗
3N steps. In general the profiles are smoother with the Ebest − Eglobalbest reaching
a low values of nearly 10−6 (Fig. 3c). The most noteworthy feature is the decrease
in fluctuations in 〈pm〉 and SD(pm), with an approach towards a value of 0.1 for the
〈pm〉. This magnitude of mutation probability, we believe is the optimal choice for the
present problem being looked into.

Till now in the figures being discussed, whenever the temperature was readjusted to
a higher value periodically, the structure with the best energy obtained in the immediate
previous temperature step was used as the starting point for new exploration. However
a parallel strategy would be to use the best energy obtained so far among all the
previous temperature steps, rather than the immediate previous best. This is done in
Fig. 4a–j. The only noteworthy feature to be reported is that this strategy does not
locate various local minima in addition to the global, but the achievement of global
minima is guaranteed like the earlier ones. The optimum value of pm = 0.1 can also
be guessed from these runs.

We now look into the profiles of runs with fixed parameters in an SA, i.e. where the
pm and fm were not allowed to vary. Figure 5a–f show the profiles for the variations
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Fig. 5 For run with fixed parameters ( fm = 1.0, single point mutation, λreheat = 0.9, λcool = 0.8) and
with nMetrop = 2,000 ∗ 3n
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Fig. 6 For run with fixed parameters ( fm = 0.1, single point mutation, λreheat = 0.9, λcool = 0.8) and
with nMetrop = 2,000 ∗ 3n

of the relevant parameters. The number of steps or generations over which the run was
carried out is 2,000 ∗ 3N , i.e. the same number of steps for which we got the best
results with AMSA. The point to be noted is that the plot of Ebest −Eglobalbest (Fig. 5b)
converges to a value of around 1, which means that this run has shown extremely poor
convergence. The fm value for this run was kept at 1.0. In Fig. 6a–f similar profiles
are shown but with a fm = 0.1 and this leads to a better value for Ebest − Eglobalbest

(0.1), but this is still far away from an acceptable good minimum. In Fig. 7a–f, fm to
0.01 and this leads to a some what better value to around 0.001 but still this is no way
near to around 10−6 obtained with AMSA. It must also be noted tha in the AMSA
runs, not only lower energy structures were obtained but they were seen to appear at
much lesser number of temperature steps. So we can conclude that AMSA is better
than a fixed parameter SA both in terms of efficacy as well as efficiency. The efficiency
of Boltzmann Annealing scheme [68] mimics that for the one obtained for the case
of Fig. 7. Having established the relative superiority of AMSA over fixed point SA,
we further proceeded to see the effects of λreheat and λcool on a AMSA run. Figures
8, 9, and 10 show the variation of different parameters and their standard deviations,
keeping λcool = 0.8 for all of them and λanneal = 0.9, 0.8 and 0.7 respectively. What
we observe is that a λreheat = 0.9 perform much better with the Ebest − Eglobalbest

reaching a steady low value of 10−6 and a very quick initial decrease by about 60
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Fig. 7 For run with fixed parameters ( fm = 0.01, single point mutation, λreheat = 0.9, λcool = 0.8) and
with nMetrop = 2,000 ∗ 3n

temperature steps. Figures 11, 12 and 13 reports results from AMSA runs keeping
λreheat = 0.9 and λcool being 0.7, 0.6 and 0.5 respectively. It is observed that a
λcool = 0.5 (Fig. 13) show poorest convergence with Ebest −Eglobalbest being lowered
to a value of only 0.1. We can thus conclude that both a high value of λreheat and λcool

can lead to better convergence in AMSA runs. Our aim in this communication has been
to devise a scheme that can throw up the best so far known result with greater regularity.
To that end we observe that our AMSA with 2, 000 ∗ 3N number of Metropolis steps
per temperature has shown an efficiency of 100 % for the pure Pt , pure Pd and Pt–
Pd mixed clusters of various sizes discussed in the next section. The AMSA scheme
with 1, 000 ∗ 3N number of Metropolis steps has an efficiency of 100 % for all pure
clusters and small sized (n ≤ 20) mixed clusters whereas for mixed cluster of larger
sizes (21 ≤ n ≤ 30) we observe an efficiency of ∼90 %. The performance of the two
methods, AMSA and standard SA, is summarized in Table 2.

3.2 Application of AMSA

The SA parameters that have been used here are given in Table 3.
Calculation for optimization were carried out for selected Pt , Pd and Pt–Pd

clusters with 2–60 atoms. For this purpose using SA method with the help of empirical
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Fig. 8 For standard run (λreheat = 0.9, λcool = 0.8) with nMetrop = 1,000 ∗ 3n, adaptive pm and
fm , {xcurrent } reset to {xbest } after run at a particular T 1
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Fig. 9 For standard run (λreheat = 0.9, λcool = 0.8) with nMetrop = 1,000 ∗ 3n, adaptive pm and
fm , {xcurrent } reset to {xbest } after run at a particular T
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Fig. 10 For standard run (λreheat = 0.9, λcool = 0.8) with nMetrop = 1,000 ∗ 3n, adaptive pm and
fm , {xcurrent } reset to {xbest } after run at a particular T
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Fig. 11 For standard run (λreheat = 0.9, λcool = 0.7) with nMetrop = 1,000 ∗ 3n
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Fig. 12 For standard run (λreheat = 0.9, λcool = 0.6) with nMetrop = 1,000 ∗ 3n
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Fig. 13 For standard run (λreheat = 0.9, λcool = 0.5) with nMetrop = 1,000 ∗ 3n
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Table 2 Comparison of performance of AMSA and SA

AMSA SA

(i) Global minimum guaranteed for any size (i) Global minimum not guaranteed

(ii) Global minimum hit in lesser number
of temperature steps (∼540)

(ii) Best structure obtained (not necessarily global) takes
more steps to reach (∼600 to find a local structure)

(iii) Ebest − Eglobalbest ∼ 10−6 (iii) Ebest − Eglobalbest ∼ 10−3

Table 3 SA parameters used
Number of geometrical

parameters
3N where N = 2 → 60

Allowed range for each
geometric parameter

[xmin , xmax ] = [−20.0, 20.0]

Initial SA temperature Tin = 1.0

Number of cooling steps ncool = 60

Cooling schedule T = Tin ∗ λ
(icool−1)

cool

icool = 1, 2, . . . , ncool

Cooling rate λcool = 0.8

Reheating schedule (when ‘T’ is
reset to a high value)

T new
in = T previous

in ∗ λreheat

Reheating rate λreheat = 0.9

Number of Metropolis samples
for a particular ‘T ’

nmetrop = 2, 000 ∗ 3N

Initial mutation probability pinitial
m = 0.01

Initial mutation intensity f ini tial
m = 10.0

Mutation update parameter �y = 0.75

Adaptive mutation interval nsamples = nMetrop
isamples

isamples = 4

Adaptive mutation range
[rmin

m , rmax
m ]

[0.1, 0.2]

Gupta Potential we have obtained most stable lowest energy isomer. The energies and
the point groups of all the stable minima of the three different types of clusters are
given in Table 4.

On observation of structure obtained we note that the geometry of the lowest energy
structure (stable structure) for a particular nuclearity is strongly dependent upon the
composition. Here we have studied the stability of pure Pt, Pd and fifty percent
mixed cluster of Pt–Pd alloy. It is important to note that the use of the particular
empirical potential neglects the specific electronic effects (e.g. Jahn-teller distortions)
which may reverse the ordering of isomer energies leading to the distortion of certain
high symmetry structures.

Pt-clusters: Considering the energy values of pure Pt-clusters of different nuclear-
ity in the Table 4 it is clear that a few clusters have relatively much lower energy than
the nearest neighbours. The fact is also supported by the more symmetrical point
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k)

(l) (m) (n)

Fig. 14 Structures of stable Pt clusters

groups of the stable clusters [69]. This is also clearly observed when a plot of the
difference between E f it and the calculated average binding energy versus nuclearity
of cluster is followed (refer to the next section and Fig. 17). Clusters with nuclear-
ity 4, 6, 7, 13, 16, 17, 24, 29, 32, 40, 43, 51, 53, 60 are showing maximum stability
(depicted in Fig. 14) where as nuclearity 3, 12, 14, 21 are unstable structures compared
to the other Pt-clusters. Sachdev et al. [70] calculated the Pt-cluster structures using
many body Embedded atomic Method (EAM) taking icosahedral and cub-octahedral
structures and then compared these with structures found by Monte Carlo Simulated
Annealing (MCSA). In MCSA search less symmetrical isomers with lower energies
are reported to be ‘magic numbers’ of 13 and 55 atoms. In our discussion ‘magic
numbers’ are 6, 13 with lower nuclearity. Here we have found a number of regular
structures along with disorder structures. Again Doye and Wales [74] also found using
the Sutton–Chan (SC) many body potential that the icosahedron to be the lowest energy
for Pt13 cluster.

Pd-clusters: If we look at the nature of the structures of Pd-clusters from our
approach we again see the similar geometry of cluster as Pt-clusters mentioned earlier.
Using an EAM potential Sachdev et al. [70] found icosahedral global minimum with
magic number 13 or 55 atoms of Pd-clusters. Similarly, geometry optimization by
Reddy et al. [71] led to the conclusion that the icosahedron is the most stable which
was supported by the study using the Corrective Effective Medium (CEM) calculation
for (Pd)n clusters (n ≤ 23) by Stave and DePristo [72]. These observation have
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(a) (b) (c) (d) (e) (f) (g)

(h) (i)

Fig. 15 Structures of stable Pd clusters

(a) (b) (c) (d) (e) (f) (g)

Fig. 16 Structures of stable Pt–Pd clusters (Atoms in dark shade are Pd)

(a) (b) (c)

Fig. 17 Plot of a Binding Energy Eb (for Pt shifted by 1.4 units and by 0.6 units for mixed Pt–Pd cluster),
b (E f it − Eb) and c �2 Eb , with cluster nuclearity

been supported by the High-resolution electron microscopy studies by Penisson and
Renou [73] for Pd-clusters. Again a plot of difference between E f it and Eb versus
nuclearity shows particularly stable structures for n = 4, 6, 7, 13, 15, 37, 42, 46, 53
(depicted in Fig. 15) and unstable for n = 3, 11, 21, 25 Pd-clusters (refer to the next
section and Fig. 17). if we observe the plot of the second difference in the binding
energies (
2 Eb) against N , the peaks also support the above stable structures and
troughs are the unstable structures.

Pt–Pd-clusters: Due to the low enthalpy of mixing the bulk of Pt–Pd mixed
clusters are solid solution. Transmission electron microscopy [75–87] shows the
Pt–Pd small clusters to have cub-octahedral structures with fcc packing. Again low
energy ion scattering experiments have indicated the surfaces of these Pt–Pd clus-
ters are enriched in Pd rather than homogeneous distribution of Pt and Pd atoms.
In stoichiometric (Pt Pd)n clusters usually lower cluster (n ≤ 6) show icosahedral
geometry but larger clusters have distorted geometry. If we see the plot of (E f it − Eb)

versus N it is obvious that the range of oscillations in this plot is significantly smaller
than previously observed for pure Pt and Pd clusters. There are significant troughs
for n = 4, 9, 11, 18, 19, 27, 30 (depicted in Fig. 16) showing the stability of clusters
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(a) (b) (c) (d) (e) (f)

(g) (h) (i)

Fig. 18 Local structures, for a standard run (λreheat = 0.9, λcool = 0.8) with nMetrop = 1,000 ∗ 3n
(Atoms in dark shade are Pd), for (Pt–Pd)30 cluster

and peaks for n = 2, 13, 25 showing relatively unstable structure for the particular
stoichiometric clusters (refer to the next section and Fig. 17).

In Fig. 18 we have depicted the local structures obtained, for a particular run, after
each cooling run in our standard AMSA, without resetting the current co-ordinates
to the best so far co-ordinates after each temperature sampling is complete. Thus our
method can act as a handy tool to locate not only the global minimum structure but
also the low lying and chemically important local minima structures.

3.3 Energetics

The average positive binding energy of N -atom cluster from its total cluster potential
energy (Vclus) is defined as:

Eb = −Vclus

N
(3.1)

Now the second difference of average binding may be represented as:

�2 Eb(N ) = 2Eb(N ) − Eb(N + 1) − Eb(N − 1) (3.2)

where �2 Eb(N ) denotes the relative stability of an N -atom cluster with respect to
its neighbours. Again by fitting the calculated cluster binding energies (Eb) to the

following cubic equation in N− 1
3 , we get:

E f it = a + bN− 1
3 + cN− 2

3 + d N−1 (3.3)

where a is an estimate of the cohesive energy of the bulk solid, which is obtained from
the binding energy of an infinite cluster (as N → ∞). The fitted parameter values for
obtaining E f it are depicted in Table 5.

The plots of the above defined quantities against nuclearity, for the three types of
clusters considered, have been shown in Fig. 17.
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Table 5 Fitted parameter values
for obtaining E f it

Data in brackets are from the
corresponding references

Pt Pd Pt–Pd

a 6.01648 4.00337 4.90028
(6.0412 [20] (4.1944 [20]) (5.2412 [20])
(5.853 [28]) (3.936 [28]) (4.94 [88])

b −3.72594 −2.47359 −1.31063
c 5.69845 3.31842 1.36956
d −6.24932 −4.00108 −2.13485

4 Conclusion

We have shown the efficiency of AMSA as a potent global stochastic optimization
scheme by it’s application in elucidation of structures of Pt, Pd and Pt–Pd clusters
described by the empirical Gupta potential. This potential is extremely rugged and
hence is a good case study for testing any optimization scheme. We have further, in
detail, tried to explain why the proposed scheme performs much better than conven-
tional Simulated Annealing both in terms of the quality of the solution being found out
as also from the point of view of being much more economic in terms of computational
time. As a check as to the quality of the metallic clusters being found out we have
also tried to find out the specific sizes for which the systems show high stability. Our
results are in line with those existing in literature. However, we feel that our proposed
method has the ability to handle really tough search surfaces and can be a very handy
tool for people needing really good optimization techniques.
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